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a b s t r a c t

Complex variable boundary integral equations are derived using of holomorphicity theorems for plane
harmonic problems concerning unit structures with inclusions, pores and lines of discontinuity of the
potential and/or the flow. Unlike the method of analytical elements, the equations cover problems in
which discontinuities in the potential, flow and conductance can simultaneously be encountered at the
contact points. Versions of the equations are given for connected half planes and for periodic and biperi-
odic problems. Formulae are obtained which determine the effective impedance tensor of the equivalent
homogeneous medium in cases when the unit structure is biperiodic or when the representative volume
of a structured medium is identified with the basic cell of a biperiodic system. Recurrence quadrature
formulae are proposed which enable one to solve the resulting equations effectively using the complex
variable boundary element method. They indicate the computational advantages of using the complex
variable method compared with the real variable method: the three integrals appearing in the resulting
equations are evaluated analytically in the case of linear elements (regular and singular) with the densi-
ties approximated using algebraic polynomials of arbitrary degree. In the case of elements (regular and
singular) in the form of an arc of a circle, only one integral requires numerical integration when the den-
sities are approximated using complex trigonometrical polynomials of arbitrary degree. It is emphasized
that the combination of the linear and curved boundary elements which have been developed enables the
smooth part of a contour to be approximated while retaining the continuity of the tangent and avoiding
the complications which arise when the smoothness of the approximation of a contour is ensured using
conformal mapping. Examples are presented which illustrate the computational merits of the method
developed. They show a sharp increase in accuracy (by orders of magnitude) when curved elements are
used for the curvilinear parts of a contour and when terminal elements are used to calculate the flow
intensity coefficient at singular points (the crack tips the vertices of angular notches and the common
vertices of the units of the medium).

© 2009 Elsevier Ltd. All rights reserved.

A consideration of the internal structure of a medium and the complex processes occurring at the boundaries of the structural elements is
an urgent problem in contemporary science, and advances in solving this problem are being stimulated by progress in computer technology
and computational methods. It is convenient to use complex variables in the plane problems considered below concerning steady fluid flow,
heat transfer and electric current in a piecewise-homogeneous medium when there are discontinuities at the contacts of the structural
elements. Their analytical and computational merits in solving plane harmonic and biharmonic problems are well known (for example, see
Refs 1–6). Their main merit lies in the possibility of considerably increasing the accuracy of calculations for piecewise-homogeneous media
when there are discontinuities in the potential and the flow at the contacts and when there are singularities at the common vertices of the
interacting structural elements. This is ensured by the use of highly accurate approximations for which integration in the complex plane
enables simple recurrence formulae to be derived, whereas it is extremely difficult to obtain the corresponding formulae in real variables
and they look formidable. Compared with the finite element method, the use of complex variable boundary equations is not only favourably
characterized by the simplicity in taking account of singular points and discontinuities at contacts but also, and this is especially important.
by the possibility of tracking changes in geometry brought about, for example, by the growth of cracks without a basic reconstruction of
the mesh.
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However, it should be noted that, as applied to piecewise-homogeneous domains, there is at the present time an incompatibility between
the use of complex variables in the numerical solution of biharmonic problems and, it would seem, harmonic problems which are simpler
in mathematical respects. Unlike biharmonic problems, for which complex variable boundary integral equations (C-BIE) and the complex
variable boundary element method (C-BEM) have been developed in detail and implemented in the form of computer programs (for
example, see Refs 6–9), only the method of analytical elements is used in the case of the corresponding harmonic problems,10–12. Although
it is a version of the indirect C-BEM, the method of analytical elements can only be used when only the potential, only the flow or only
the conductance undergoes a discontinuity at a contact. These conditions often occur in problems involving the flow of ground waters, for
which this method was developed but, in the general case which is important for problems involving heat transfer and electric charges
and for antiplane problems in the theory of elasticity, the potential, flow and conductance can simultaneously undergo a discontinuity. It
is therefore advisable to develop a method which is suitable in the general case.

Appropriate C-BIE and C-BEM are given in this paper. It is not a question of an elementary transposition of the results previously obtained
for biharmonic problems: unlike these problems in which the densities are complex functions, the densities occurring in the integrals for
harmonic problems are real, which leads to complications, in particular in the numerical solution of problems.

1. Formulation of the problem

We will consider a finite or infinite plane piecewise-homogeneous domain which can have pores and lines of discontinuities in the
potential and/or the flow. The potential satisfies Laplace’s equation in each of the homogeneous subdomains and the flow vector has the
components qi = k�, where �i = ∂U/∂xi are the components of the potential gradient, xi are Cartesian coordinates (i = 1,2) and k is the
conductance of the medium taken with a minus sign (for brevity, we shall henceforth call k the conductance and its inverse quantity the
resistance). Two conditions, which associate the mean values of Ua, qa and the discontinuities �U, �q of the potential and the normal
component of the flow are given at the points of the contacts:

(1.1)

where

A plus (minus) superscript corresponds to the limit of that region with respect to which the normal is external (internal) and Fq and Fu

are specified functions or operators. In the particular case of a strongly conducting contact, we have a condition which is known as the
“drainage” condition 10 in the mechanics of ground waters:

where U = Ua is the general value of the potential, kU = kch, kc is the conductance of a thin layer imitating a contact and the derivative is
taken along the direction of the tangent to the contact. The “flow” condition

is satisfied in the opposite case of a weakly conducting contact. For an ideal contact, we have

Conditions (1.1) and their special cases also refer to closed arcs, for example, to cracks or thin inclusions in which the potential and/or
the flow can have discontinuities. Conditions of the form (1.1) can also be used for external boundaries if the normal to them is considered
to be outward, it is assumed that q−

n = 0, U− = 0 and only one of the two conditions is specified. We shall henceforth use these agreements.
In the case of an infinite domain, we will assume, for brevity, that the potential and the flow are equal to zero at infinity. These two

constraints are easily removed. In the case of a finite domain, if the flow is specified at all points of its external boundary, then the overall
influx into the domain must be equal to zero. The problem consists of finding a potential which satisfies Laplace’s equation at the internal
points of the domain and gives a flow which satisfies the specified contact and boundary conditions (1.1).

With the aim of taking advantage of the merits of complex variables, we will formulate this problem by introducing the complex
coordinate z = x1 + ix2 and the complex potential

(1.2)

where J(z) is the stream function, integration is carried out along the length of an arc, starting at an arbitrary point t0 of a homogeneous
subdomain and C is a constant. The functions U and J are harmonic. The function U is single-valued in a homogeneous multiply connected
domain while J can acquire a constant on passing around notches and cuts. In order to simplify the account, we shall henceforth adopt the
easily removable constraint which excludes multivaluesness of the stream function. The function ˝(z) is then holomorphic in each of the
homogeneous subdomains. Its derivative ˝′(z) is single-valued regardless of the above-mentioned constraint. The equality

(1.3)

follows from the Cauchy–Riemann conditions for the derivative ˝′(z), where ˛z is the angle between the arbitrary direction of dz at the
point z and the ˛1 axis, the normal n is directed to the right from dz and qn and qz are the flows in the direction of n and dz respectively.
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From relations (1.2) and (1.3), we have

(1.4)

for the values of the potential and flow in a homogeneous subdomain. It is required to find a piecewise-holomorphic function ˝(z) such
that the limit values of the potential and the flow, determined by formulae (1.4), satisfy the contact and boundary conditions (1.1). We will
assume that the function ˝(z) is equal to zero at infinity in the case of an infinite domain.

2. C-BIE for a homogeneous domain with notches and cuts

We will first consider a finite or infinite homogeneous domain D with p open arcs Lk(k = 1, . . . , p) and m apertures Li(j = p + 1, . . . , p + m).
In the case of a finite domain, we have an additional external contour L0. We will denote the overall contour by L: its points in D are not
included. The direction of circumventing closed contours is chosen such that the domain D remains to the left. The direction of motion
along open arcs (cuts) is arbitrary. The initial point in an arc s denoted by ak and the final point by bk. To be specific, we will also fix the
initial point and final point on each of the closed contours aj = bi(j = p + 1, . . . , p + m). The normal n is always directed to the right from
the direction of motion. To simplify the account, we will assume that the overall flow through each open and closed contour is equal to
zero:

(2.1)

where, as above, �qn = q+
n − q−

n .
This constraint only has an effect on the equations containing the stream function and, even in the case of these equations, it is removed

by the addition of standard terms with a logarithmic singularity at infinity.2,6 When conditions (2.1) are satisfied, the stream function is
continuous in D and, on the contours Lk, it can be given by the formulae

(2.2)

C±(t) = C±
k

on Lk and C±
k

are real constants (k = 0,. . ., m + p). For open arcs, we will assume that C±
k

= Ck(k = 1, . . . , p) and, for closed contours,
q+

n = qn, q−
n = 0, C+

k
= Ck, C−

k
= 0(p + 1, . . . , p + m). The potential must be continuous at the tips of open arcs:

(2.3)

Under conditions (2.1) and (2.3), the complex potential is a holomorphic function in D. Consequently, it satisfies the equation

(2.4)

The equality (2.4) when z = t ∈ L expresses the holomorphicity theorem.6 The equalities when z ∈ D and z /∈ D + L are consequences of
the holomorphicity of the function ˝(z) in D. Substitution of expression (1.2) into Eq. (2.4) gives

(2.5)

Using equality (1.3) in an equation analogous to (2.4), we obtain for the holomorphic function k−1˝′(z)

(2.6)

By definition, in relations (2.4)–(2.6)
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As was stipulated, for closed contours

After separating the real and imaginary parts of equalities (2.5) and (2.6) when z = t ∈ L, they give two pairs of integral equations. Taking
one equation from each pair, we obtain a system of two equations which, when supplemented by the two contact conditions (1.1) for the
open arcs and the one boundary condition (1.1) for the closed contours, leads to a complete system of equations. The unknown constants
in the definition of J±(t) (2.2) for open arcs are found from the conditions for the continuity of J(z) in D.

In applications, it is convenient to replace �J by �qn in integral (2.5) and the derivative d�U/dV by �U in the integral (2.6), using
integration by parts. Equality (2.5) then takes the form

(2.7)

The real part of equality (2.7) does not contain either the stream function or the derivative of the potential. It only includes quantities
appearing in the contact and boundary conditions (1.1). An analogous transformation can be applied to equality (2.6). The resulting equation,
like (2.7), holds when the constraints (2.1) are removed. This makes them especially convenient for applications. We therefore write them
in the explicit form

(2.8)

(2.9)

The BIE in equality (2.8) when z = t ∈ L is singular with an integral in the sense of a principal value (Cauchy). The theory of such
integrals and of the corresponding equations is well known.13 The BIE in equality (2.9) when z = t ∈ L is hypersingular with a complex finite
particular Hadamard integral. The theory of complex finite particular integrals and equations with such integrals exists.6,7 Both singular
and hypersingular integrals are evaluated using efficient recursion formulae along arbitrary curvilinear arcs if the densities are complex
functions (for example, see Ref. 6). However, in the equations being discussed, the densities are real functions, which necessitates an
appropriate modification of the methods of integration. Such a modification as well as methods for efficiently evaluating integrals with a
logarithmic kernel are discussed below. Equations (2.8) and (2.9) when z ∈ D enable us to calculate the potential and flow within a domain,
after the BIE, represented by the second lines, have been solved. The third lines can serve to monitor the accuracy of the calculations.

3. C-BIE for a piecewise-homogeneous domain with inclusions, pores and lines of discontinuity

The initial equation (2.4), the analogous equation for the function k−1˝′(z) or any equation following from them can be extended to the
case when the domain is not homogeneous and consists of an assembly of homogeneous parts. We will first demonstrate this for the initial
equation (2.4). We will assume that there is a system of homogeneous blocks. The matrix, which can enclose the finite blocks, is assumed
to be an infinite block. A block within a second unit represents an inclusion and a homogeneous block encompassing an inclusion can be
considered as a homogeneous domain with an opening in which the inclusion is inserted. The total number of homogeneous blocks which
can have holes and open lines of discontinuity in the potential and/or the flow is equal to n.

We write Eq. (2.4) for each of the homogeneous units

(3.1)

where

Dj is the is the set of internal points in a block j, Lj is the sum of the open and closed contours representing the boundary of the j-th block
and the lines of discontinuity in it. Summing equality (3.1) over all block and taking account of the fact that the right-hand sides are equal
to zero when z /∈ Dj + Lj , we arrive at a new equation (2.4), where L is now the overall boundary of the system of block (the contact between
adjoining blocks is assumed to be a line on which the conductance, potential and flow can have a discontinuity), the direction of motion
along a contact is arbitrary and D = D1 ∪ D2 . . . Dn is the set of internal points of the system considered. A summation, similar to that used
to obtain the new equation (2.4) can be applied to Eqs. (2.8) and (2.9). As a result, we have new Eqs. (2.8) and (2.9) for the system of
blocks where L is now the overall boundary of the system of blocks k(z) = kj , where kj is the conductance of the block to which the point z
z ∈ Dj belongs. On the external boundary, q− = 0, U− = 0. When z = t ∈ L, the new equations (2.8) and (2.9), together with the contact and
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boundary conditions (1.1), give the system of C-BIE for the problem. This system has incidentally been presented by us previously without
derivation in a short review14 discussing results on thermoelasticity. After solving the system, the new equations (2.8) and (2.9), when
z ∈ D, determine the potential and flow at the internal points. In the case, when the potential is continuous at all the points of the contacts,
the new equation (2.9) is sufficient to solve the problem. In the case when the flow is continuous at the contacts, the new equation (2.9) is
sufficient.

Remark. The equations which have been obtained are easily extended to problems involving system of units in connected half-planes.
Calculations, analogous to those presented in Ref. 6 for biharmonic problems, can be used for this purpose. Finally, we arrive at equations
which only differ from the equations for a whole plane with blocks in that there are additional integrals with kernels which do not have
singularities. In particular, for a system of blocks in the lower half-plane (Rez < 0), the new equations (2.8) and (2.9) take the form

where m = (k(1) − k(2))/(k(1) + k(2)), k(1) is the conductance of the lower half-plane, k(2) is the conductance of the upper half-plane, the
supplementary function ˚a(z) only differs from the integral term on the left-hand side of equality (2.8) in the replacement of z by its
conjugate value z̄:

and the supplementary function Van(z) differs from the integral term on the left-hand side of equality (2.9) in its sign, the replacement of
ei˛z by e−i˛z and the replacement of z by its conjugate value z̄:

A computer program developed for a partitioned system in the whole plane can therefore easily be adapted to solve of problems involving
systems of units in connected half-planes.

4. C-BIE for biperiodic problems

We will first consider an infinite plane with a biperiodic system of open and closed contours. Such a system with one open and one
closed contour in each of the cells is shown in Fig. 1. The results will then be extended to biperiodic systems of units with pores, inclusions
and lines of discontinuity. We will denote the corresponding domain by D. The periods are given by the complex vectors 2ω1 and 2ω2. The
condition for their non-collinearity is expressed by the inequality Im(ω̄1ω2) /= 0. To be specific, we will assume that the angle ˛ω2 between
the periods is measured from 2ω1 to 2ω2 and that it is positive and does not exceed �. The number Im(ω̄1ω2) is then positive and is equal
to S/4, where S is the area of a basic cell.

We will place the origin of the coordinates in the basic parallelogram ABCD outside the contour L, which includes p open arcs Lk(k =
1, . . . , p) and m closed contours Lj(j = p + 1, . . . , p + m), corresponding to the cuts. The boundary conditions for the congruent contours
in the other cells repeat the conditions for the contour of the basic cell. Consequently, the derivative ˝′(z) of the complex potential
is a biperiodic function: ˝′(z + k2ωj) = ˝′(z) for any integer k (j = 1,2). The function ˝(z), being an integral of ˝′(z), is quasiperiodic:
˝(z + 2ωj) = ˝(z) + 2ˇj , where 2ˇj is a cyclic constant in the direction of 2ωj(j = 1, 2). For the potential and the stream function, we have

(4.1)

where k2ıj = Re2ˇj, 2�j = Im2ˇj are real cyclic constants and k is the conductance of the plane.
As above, for a start we take conditions (2.1), which express the fact that the influx into each of the apertures and into each open arc is

equal to zero. The stream function is then single-valued in D and is given by formula (2.2) on the contours Lk. Consequently, the complex
potential ˝(z) is a quasiperiodic holomorphic function in the domain D.

A solution will be sought which gives a continuous potential, that is, conditions (2.3) at the tips of the open arcs must be satisfied in the
basic cell. With these conditions, the holomorphicity theorem for quasiperiodic functions 6 gives the equations

(4.2)

(4.3)

The functions �˝(�) and 	˝(z) are defined in the same way as in Section 2, ς(z) is the Weierstrass zeta-function with periods 2�1 and
2�2 and 2�1 and 2�2 are the cyclic constants of the zeta-function in the direction of the periods 2�1 and 2�2 respectively. These constants
can be found using the formula 2�j = 2ς(ωj) (j = 1, 2). As usual, for closed contours we take ˝+(t) = ˝(t), ˝−(t) = 0.
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Fig. 1.

The Legendre identity �1ω2 − �2ω1 = �i/2 enables us to express C� in terms of Cω:

Equation (4.3) can then be written in the form

(4.4)

that is, the left-hand side of equality (4.2) actually only contains one complex constant ˇ1 = kı1 + i�1 of the function ˝(z). The two real
constants �1 and �1 have to be specified. Below, when discussing the averaging of properties, we will express them in terms of physical
quantities-mean flows. Equation (4.3) is therefore satisfied by specifying C� using formula (4.4) and we can concentrate on Eqs. (4.2).

We now consider a biperiodic block system with the same periods 2�1 and 2�2 which consists of blocks which are inserted into
apertures or outside apertures in a homogeneous plane with excisions and cuts. The initial blocks themselves can have inclusions, pores
and open arcs of discontinuity in the potential and/or the flow. Using appropriate cuts, these blocks can be represented as the sum of simply
connected homogeneous subdomains Dj with contours Lj in the basic block. These subdomains are repeated with periods 2�1 and 2�2 in
the other cells.

For a finite subdomain Dj in the basic cell, formula (3.1) can be written in the form

(4.5)
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where it has been assumed that ˝+
j

(t) = ˝j(t), ˝−
j

(t) = 0. The equality (4.5) is obtained from equality (3.1) if account is taken of the
definition of the zeta-function

(summation is carried out over all positive, negative and zero pairs of m1 and m2 with the exception of m1 = m2 = 0. Actually, if z belongs to
the basic cell, the point z - w lies outside it and, consequently, outside Dj . Then, according to equality (3.1) when z /∈ Dj + Lj , the corresponding
integral on the left-hand side of equality (4.5) is equal to zero. The integrals of the terms 1/w and z/w2 are equal to zero since the function
˝j(z) is holomorphic in Dj . Consequently, the replacement of 1/(� − z) by ς(� − z) does not change the integral on the left-hand side of
equality (3.1). As far as the term with ς(�) is concerned, a similar argument gives

Hence, when the point z = 0 does not belong to the j-th block, this integral is equal to zero. Otherwise, it is possible to put ˝j(0) = 0 since
the complex potential is defined apart from an arbitrary constant. Finally, the replacement of 1/(� − z) by ς(� − z) − ς(�) does not change
the integral on the left-hand side of equality (3.1) and, in the case of homogeneous units, Eq. (3.1) can therefore be written in the form (4.5).

Equation (4.5) has the same form as (4.2). The equations can therefore be summed over the homogeneous matrix and over all the
homogeneous blocks. The same can be done for any other group of equations following from (4.5) and (4.2), after separating the real and
imaginary parts and/or integrating by parts. Finally, application of the same procedure that led to the new equations (2.8) and (2.9) to Eqs.
(4.2) and (4.5) gives

(4.6)

(4.7)

where (z) is the Weierstrass sigma-function, ℘(z) = −dς/dz is the Weierstrass gamma-function, L is the overall boundary of the system of
blocks in the basic cell, and D = D1 ∪ D2 . . . ∪ Dn is the set of internal points of the system being considered in the basic cell. Artificial cuts
made in the initial blocks with inclusions, pores and cracks drop out from L since there are no discontinuities along them: �qn = 0, �U = 0
and �k = 0.

Using the series presented above for ς(z) and the series

it is possible to adapt a computer program intended for non-periodic problems on systems of blocks to solve analogous biperiodic problems.
Remark. Similar arguments give the C-BIE for periodic problems with period �. The resulting equations reproduce the equations obtained

in Section 3 with the logarithmic kernel ln(� − z) replaced by ln[sin(� − z)], the singular kernel 1/(� − z) by ctg(� − z) and the hypersingular
kernel 1/(� − z)2 by 1/ sin2(� − z).

5. Equations for the effective properties

The equations of the preceding section enable us to solve the averaging problem, that is, to replace an inhomogeneous medium with
pores, inclusions, cracks and other lines of discontinuity with a macroscopically equivalent homogeneous medium. Equivalence means that
the mean potential gradients are the same in the actual and homogeneous media for the same mean flows.

The mean potential gradient. We will now consider a continuous plane (without units, cuts and excisions). Suppose a homogeneous
gradient field �∞ = �∞

1 + i�∞
2 is specified in this plane. This field is periodic in the case of an arbitrary period and the corresponding

potential U∞ = �∞
1 x1 + �∞

2 x2 is therefore a quasiperiodic function for any periods. For an element of length ds, taken in a direction at an
angle ˛z , we obtain

In particular, in the direction of the period 2ωj , we have

For an increment U∞ along the period 2ωj we obtain from this that

Consequently, the cyclic constants of the potential U∞(z) are equal to 2Re(�∞ω̄j). They will be the same as the cyclic constants determined
by the first of formulae (4.1) for a system of biperiodic blocks if j = Re(�∞ω̄j)(j = 1, 2). Hence, the cyclic constants of the potential for a
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plane with units, pores, inclusions and lines of discontinuity are expressed in terms of the mean gradient of the linear potential U∞(z) of a
continuous plane (without an internal structure).

The mean flow. We will now calculate the increment in the stream function along the sides AB and AD of the basic cell (Fig. 1). We have

The mean flows for these increments are qaj = 2�j/|2ωj|.
We will now consider the homogeneous (effective) flow field q∞ = q∞

1 + iq∞
2 in the continuous plane. It is periodic for any period. In the

local (n, �) system with the � axis in a direction which makes an angle ˛� with the x1 axis, we have

Consequently,

It follows from this that, for the directions of the periods,

Then, since qaj = 2�j/|2ωj|, we obtain that the actual mean flow qaj along a period of 2�j will be equal to the effective flow q∞
nj

along this
direction when �j = −Im(q∞ω̄j)(j = 1, 2). Hence, the cyclic constants of the stream function of the initial problem are expressed in terms
of the mean flow in a continuous plane (without internal structure).

The constants ˇj, Cω and C�. The formula

(5.1)

where k0 is the conductance of the matrix, which expresses the cyclic constants 2ˇj in terms of the mean values of the gradient and the
flow, follows from the equalities

Substitution of expression (5.1) into the expression for Cω gives, after some reduction,

where S is the area of the basic cell. Using expression (5.1) in equality (4.3), we obtain the fundamental relation between the effective
gradient and the effective flow

(5.2)

where r0 = 1/q0 is the resistance of the matrix enclosing the blocks.
Substitution of expression (5.2) into the equality (5.1) gives the required expression for the complex cyclic constants ˇj solely in terms

of the two real constants q∞
1 and q∞

2 , which appear in the definition q∞ = q∞
1 + iq∞

2 of the effective flow:

(5.3)

Using this equality, the constant C�, defined by formula (4.4), can be expressed in terms of the effective flow q∞ = q∞
1 + iq∞

2 :

(5.4)

Note that the integral in equalities (5.2)–(5.4), after using the definition ˝(z) = k(z)U(z) + iJ(z) and integrating the term J(z) by parts,
takes the form

(5.5)

Finally, taking account of relations (5.4) and (5.5), we conclude that Eqs. (4.6) and (4.7) turn out to have been formulated in terms of
only the potential and the flow and only contain two real constants: the specified mean flows q∞

1 and q∞
2 along the coordinate axes.

The effective resistance tensor. The effective resistance tensor is found by solving two problems with the homogeneous contact and
boundary conditions: 1) q∞

1 = 1, q∞
2 = 0 and 2) q∞

1 = 0, q∞
2 = 1. The solution of each of these gives the functions �(kU) and �q determining

the integral on the right-hand side of equality (5.5) which, when substituted into relation (5.2), gives the mean gradient �∞ = �∞
1 + i�∞

2 .
We denote the values of �∞

1 , �∞
2 obtained from relation (5.2) for the solution of the first problem by r11 = ra11 + r0, r12 = ra12 and the values
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�∞
1 , �∞

2 obtained from relation (5.2) for the solution of the second problem by r21 = ra21, +r0. Then, in the case of an arbitrary mean flow,
we have

where R is the effective resistance matrix. It is seen that the effective resistance matrix R is the sum of a spherical tensor r0I for a structureless
plane and the tensor Ra of the additional resistances which are induced by the existence of structural elements. This makes it more
convenient for applications than the effective conductance tensor which is inverse to it. This latter tensor can only be considered as being
additive in cases when the additional resistances rakj are small in absolute magnitude compared with |r0|.

6. Numerical solution of the C-BIE using the C-BEM

It was mentioned in the introduction that, when the density is a complex function, the complex variable singular and hypersingular
integrals can be evaluated for arbitrary curvilinear elements using efficient recursion formulae which have been presented earlier.6,7 This
advantage of complex variables is partially lost in the case of Laplace’s equation when the density turns out to be a real function. The point
is that now its approximation, by complex polynomials, for example, is not a real function for an arbitrary curvilinear element.

This difficulty can be overcome in two ways. The first consists of mapping the arc of integration onto a real segment and using a real
approximation of the density in it in the form of real polynomials, for example. This approach was used systematically in Refs 10–12. Its
drawback lies in the need to take account of the pole of the mapped function for each type of elements. On the other hand, the second
method, which is described below, uses integration in complex variables but the element of integration and the approximation of the
density in it must be such that the approximating function turns out to be real at the points of the element. The drawback of this approach
lies in the restricted class of boundary elements for which such an approximation is fairly simply accomplished. However, it does include
two important types of boundary elements: 1) linear elements and 2) elements along arcs of circles. It is clear that these two forms of
elements enable an arbitrary contour to be fairly accurately represented by a set of them. We emphasize that the use of elements in the
form of arcs of circles on smooth parts of a contour ensures an approximation with a continuous tangent. In order to simplify the quadrature
formulae, the elements are converted to a standard form by a linear transformation of the coordinates.

A rectilinear element with its start at the point b and end at the point c is transformed in the interval [1,−1] using the complex coordinate
z′ = x′

1 + ix′
2, which is related to the initial coordinate z = x1 + ix2 by the linear equation z = zc + lz′ exp(i˛c), where zc = (b + c)/2 is the

middle point of the element, l = |b + c|/2 is its half length and ˛c is the angle which the element makes with the x1 axis. It is important
that, at the points of the element, � ′ = � ′ = x′

1.
An element along an arc of a circle starting at the point b and ending at the point c with the centre of the circle at the point zc is transformed

into an arc of unit radius starting at the point �0 and ending at the point �0, with its centre at the new origin of coordinates using a new
complex variable z′ = x′

1 + ix′
2, which is related to the initial variable by the linear equation z = zc + lz′ exp(iˇc), where l = |b − zc | = |c − zc |

is the radius of the initial arc, ˇc is the angle of the normal at the middle point of the arc to the x1 axis with

and 2�0 is the aperture angle of the arc. It is important that � ′ = 1/� ′ at the points of an arc element.
The function f, which is defined at the points of an element (b,c), can be approximated on the corresponding standard element using

the basis functions Bk(� ′) with n mesh points � ′
j
(k, j = 1, . . . , n) which are such that Bk(� ′

j
) = ıkj (ıkj is the Kronecker delta). Then,

(6.1)

where fk = f (� ′
k
) = f (� ′(�k)) is the value of the function at the k-th mesh point (k = 1,. . .,n). The functions fk are real in the harmonic problems

being considered. In view of the fact that Bk(� ′
j
) = ıkj , the right-hand side of equality (6.1) is real at the mesh points � ′

k
. However, it cannot

be real at the other points of the transformed element if the basis functions are not real at these points. It is therefore necessary to focus
on basis functions for which the right-hand side of equality (6.1) is real at the points of the transformed element.

In the case of a straight element since � ′ = � ′ = x′
1, any real function of the real argument � ′ can be used. Algebraic polynomials are the

simplest basis in [-1,1]. Then, Bk(� ′) are Lagrange polynomials Pk(� ′):

(6.2)

where cks are constants which are determined by the arrangement of the mesh points.
In the case of an element along the arc of a circle the choice of the basis functions with the necessary property is not so obvious, since

the coordinate � ′ = ei� in it is not real. Nevertheless, bearing in mind that trigonometric polynomials are a simple basis in [−�0, �0] it is
advisable to use them for the approximations

(6.3)
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where n = 2m + 1 is an odd number and, in the general case, c̃ks are complex constants, which are determined by the arrangement of the
points � ′

k
on the arc of the circle. They are easily calculated using the relation between the coefficients ckj and Lagrange polynomials of

degree 2m (see Ref. 6):

At least some of the coefficients c̃ks are not real. Nevertheless, it is easily verified, by taking the conjugate in equality (6.3) and taking
account of the fact that � ′ = 1/� ′, that the basis functions Bk(� ′) are real in an arc of the unit circle.

In order to evaluate the integrals appearing in the C-BIE obtained above, the integration contour is represented by a set of curved
and rectilinear elements, each of which is transformed to the standard form by a linear transformation and the density is approximated
according to relation (6.2) in the case of a standard rectilinear element or, according to relation (6.3), for a standard curved element. We
finally arrive at standard types of integrals over standard elements. It is clear from Eqs (2.8) and (2.9) that it is only necessary to have
quadratures for three types of integrals: with a logarithmic, singular and hypersingular kernel. In the case of approximations (6.2) and (6.3),
they have been given earlier6,7 for the singular and hypersingular integrals in the form of analytical recursion formulae. Actually, the two
subroutines for a standard rectilinear element and two subroutines for a standard curved element, developed for biharmonic problems, can
be used in the problems being considered without any modifications. Integrals with a logarithmic kernel are transformed to singular and
hypersingular integrals by integration by parts but the starting integral has to be found numerically in the case of a curved element. The
four subroutines, which are already used in solving biharmonic problems, are supplemented with a subroutine for calculating the starting
logarithmic integral in the case of a curved element.

Finite elements. The case when the density or its derivative becomes infinite at a certain point of an element requires special attention.
To be specific, we will assume that this point c is the end of an element and that the asymptotic behaviour of the density has the form d−a,
where a = n1/m1 is a rational fraction (n1 < m1, where n1 and m1 are positive integers), and d = |c − �| is the distance from the point � to
the end point c. The linear transformations z = zc + lz′ exp(i˛c) and z = zc + lz′ exp(iˇc) do not change the form of a singularity since, in the
new coordinates, we have d = ld′, where d′ = |c′ − � ′|. Here, c′ = 1 for a rectilinear element and c′ = �0 for a curved element. It is therefore
sufficient to consider density approximations for standard elements. We will denote the real density in the transformed terminal element
by g(� ′). Taking account of its asymptotic behaviour, we have g(� ′) = (d′)−af (� ′), where f (� ′) is a smooth real function in the element.
Approximation (6.1) can be used for f (� ′). Approximation of g(� ′) then takes the form

In the case of a rectilinear element [−1, 1], the difference 1 − � ′ is a real positive number and, therefore, d−a = (1 − � ′)−n1/m1 . The right-
hand side of the last expression is a holomorphic function of the complex argument z′ in a plane with a cut from the point + 1 to minus
infinity. The product (� ′)s(1 − � ′)−n1/m1 is the same. In the case of the functions Bk(� ′), taken as the Lagrange polynomials (6.2), we therefore
have the approximation

The singular and hypersingular integrals in this approximation are easily evaluated for any integers n1 and m1 using recursion formulae
15 (formulae have been given earlier6,7 for an ordinary root singularity). An integral with a logarithmic kernel is reduced to a singular
integral. Hence, no problems arise in taking account of the singular behaviour of the density in the case of a rectilinear element.

In the case of a curved element, d′ = |c′ − � ′| cannot be replaced by c′ − � ′ since the difference c′ − � ′ is not real in such an element. This
difficulty can be overcome by using Re(�0 − � ′)−a instead of |�0 − � ′|−a. In the limit when � ′ → �0, these functions only differ by the factor
cos(a�/2) which can be included in the function f (� ′). The asymptotic behaviour is then described by the formula

(6.4)

We now note that, in the transformed variables, any of the integrals in the C-BIE which have been obtained can be written in the form

(6.5)

since the density g(� ′) is real. After substituting expression (6.4) into integral (6.5), we then obtain

(6.6)

The symbol for the real part appears outside the integral sign. The approximation (6.1) with the basis function (6.3) is now already
applicable. Since, for the transformed, arc we have � ′ = 1/� ′, no difficulties are encountered in evaluating the singular and hypersingular
integrals on the right-hand side of equality (6.6). Again, the quadratures obtained for problems in the theory of elasticity6,7,15 can be used.
For integrals with a logarithmic kernel, once again just one starting integral has to be evaluated numerically and, then, only in the case
of a curved element. Having subroutines for evaluating the integrals for standard elements, it is easy to form the matrix of the weighting
factors of the C-BIE for any block system.
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Fig. 2.

7. Numerical experiments and examples

We will first illustrate the increase in accuracy when, first, curved elements are used for the peripheries and, second, terminal elements
are used for a fissure when the flow at its tips tend to infinity. To be specific, we will consider thermal problems.

The calculations were carried out with double precision using three-point boundary elements (rectilinear, curved, regular and terminal),
that is, n = 3 in equalities (6.2) and m = 1 in equalities (6.3). All the integrals, apart from the starting integral for an arc of a circle in the
case of a logarithmic kernel, were evaluated using quadrature formulae and subroutines developed for biharmonic problems (see Ref.
6 for example). The starting integral with a logarithmic kernel was evaluated along a curved element when s = 0 in approximation (6.3)
using Gauss’ quadrature formula with ten nodes. The logarithmic singularity was isolated for the collocation points belonging to the arc
of integration and integrated analytically so that the Gauss’ formula was always applied to a function without a singularity. A personal
computer with a clock frequency of 2 MHz and a core memory of 512 Mb was used. The computation time did not exceed 30 seconds in the
case of calculations for the finest mesh of the elements described below.

Example 1. Increase in accuracy using curved elements. Consider a tube with an inner radius R1, outer radius R2, conductance k, temperature
T1 on the inner boundary and T2 on the outer boundary. The exact solution, with which the numerical results can be compared, for a flow
in a direction opposite to the radius r, is given by the formula

It was assumed in the calculations that

In order for the lengths of the boundary elements on the inner and outer boundaries to be substantially different, it was assumed that
R2 /R1 = 10 and 100. Then, the flow to ten correct digits in the numerator is q−r = 0.43429448190/r for R2/R1 = 10 and, for R2/R1 = 100,
the numerator is half as large. In the example being discussed, the sole source of error (apart from rounding off errors) can only be the
error in the numerical evaluation of the starting integral in the case of a logarithmic kernel.

Calculations using the C-BEM program in the case of six curved elements, three on the inner and three on the outer contour, gave seven
correct digits both for R2/R1 = 10 and for R2/R1 = 100. This is actually a rounding off error. Experiments using rectilinear elements instead
of curved elements showed that, in the case of 32+32 = 64 elements, there is an error in the second digit, for 64+64 = 128 elements there
is an error in the third digit and for 128 + 128 = 256 elements in the fourth digit. It is clear that the use of curved elements increases the
accuracy in the case of curvilinear contours considerably.

Example 2. The use of a terminal element for a flow with a radical singularity. Consider a straight crack in a rectangular plate (Fig. 2). The
length of the crack is 2lC , it makes an angle with a horizontal side of the plate ˛c , the dimensions of the plate are a and b, its conductance
is k and the temperature on the crack surface is equal to T1 and the temperature on the contour of the plate is equal to T2. Th total influx of
heat into the crack �JC must be equal to the total influx �Jext through the contour of the plate, and the equality �JC = �Jext can therefore
serve as an additional control of the accuracy of the calculations.
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In the problem considered, the discontinuity in the flow on the crack tends to infinity on approaching the tips in accordance with the
formula

(7.1)

where kq is the flow intensity factor (FIF). It follows from the asymptotics (7.1) that it makes sense to use terminal elements with a radical
singularity.

We will now compare the accuracy of the calculation of the flow with and without terminal elements. To be specific, we take

Calculations were carried out for various numbers of elements on the outer boundary (from 24 to 80), various numbers of regular
elements in the crack (from 10 to 140) and for various lengths of the elements close to the crack tips. It was found that an increase in the
number of elements on the outer boundary has a small effect on the flow �qr at the points of the crack and changing their number from 24
to 80 only affects the fifth significant digit. The size of the elements adjacent to the tips turns out to have the greatest effect. The asymptotics
(7.1) only develop at a very short distance d from a tip, of the order of 0.01lC . It is only when the size of a terminal element was less than
0.005lC that the calculated values of the FIF retained three unchanged significant digits. In the case of the finest mesh (80 elements on the
outer contour, and 150 regular and two terminal elements in the crack), the error in the calculation of the FIF did not exceed one unit in the
fourth digit. For the three mesh points 1, 2 and 3 closest to the tip, the distance d to the tip was 0.000667, 0.002 and 0.003333 respectively.
The flow �qn at these points, calculated using terminal elements was equal to 101.02, 58.32 and 45.18. For comparison, when the terminal
elements are replaced by regular elements at the same points, the flow is equal to 130.64, 59.66 and 45.59. Hence, the error when regular
elements are used is 29%, 2.3% and 0.9% for mesh points 1, 2 and 3 respectively. At other points of the crack, it does not exceed 0.5%. The
total influx into the crack �JC is equal to 6.302255 and the influx through the contour of the plate agrees with this value up to eight digits.

Example 3. A Strongly conducting crack in a rectangular plate. The results presented below were obtained for 56 elements on the contour
of the plate, and 140 regular and two terminal elements in the crack (the total number of unknowns was 594). According to the estimate
obtained, the error in the calculated values of the FIF does not exceed two units in the fourth digit. The error in the total influx did not
exceed 10−7 (the influx itself was of the order of unity). The calculated values of the normalized FIF

when a = 1 and of the normalized influx

are presented below
It can be seen that the FIF increases sharply when the crack tips approach the vertical boundaries of the plate. This is explained by the
concentration of the flow in the zones between the crack and the boundaries. The existence of a minimum in the dependence of kNq on
2lC/a is less obvious. This arises on account of the sharp increase in the FIF when the ratio 2lC/a becomes less than 0.1. This increase can
be understood if the asymptotic analytical solution

for a small crack in a disc of a diameter a is used when 2lC/a → 0. This solution shows that the FIF tends to infinity when 2lC/a → 0. When
a = 1 and 2lC/a = 0.001, the asymptotic value of the FIF is kNq = 8.321 against the calculated value kNq = 8.344 presented above and, when
2lC/a = 0.01, the asymptotic value is equal to kNq = 3.774 against the value presented above kNq = 3.769. The agreement between the
results is obvious. For the flow, we have the asymptotic formula

When 2lC/a = 0.01, we have �JnC = 1.1859 against �JnC = 1.1692, and the agreement is completely satisfactory.
The dependence of the FIF on the angle of orientation of the crack is shown below

It can be seen that this is a weak dependence even in the case of a long crack (2lC/a = 0.75).
Finally, the dependence of the FIF knq and the flow �JnC on the ratio b/a of the sides of the plate for a horizontal (˛c = 0) crack of length

2lC = 0.75a is given below
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It is obvious that both knq and �JnC increase as the heated horizontal sides of the plate approach the crack. It is also clear that, for small
values of b/a, the total influx becomes roughly inversely proportional to the distance from the crack to the horizontal side of the plate. This
might be expected since the flow becomes practically homogeneous in the narrow zones between the crack and the horizontal sides.
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